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Lie series in an extended region of phase space 

Kenneth La Mon 
Exploratory Studies Group, Accelerator Fusion Research Division, Lawrence Berkeley 
Laboratory, Berkeley, CA 94720, USA 

Received 21 June 1989 

Abstract. A perturbative approach has been worked out that explicitly gives the canonical 
transformations which solve a certain class of analytic symplectic maps. The advantage of 
this method is that the perturbation series need not be derived with respect to the origin 
in phase space. Rather it is computed about a given radius while also circumventing the 
familiar problem of ‘small denominators’. The method is applied to a simple system in 
one degree of freedom for which computer output shows remarkable convergence near a 
dominant resonance. 

1. Introduction 

The notation and formalism used here is essentially that of Dragt and Finn [ 1,2] and 
Dragt [3] but is also due in part to Forest [4, 5,6]. Forest has written a set of computer 
programs that are a Lie algebraic implementation of the differential algebra (DA) 

package of Berz [7]. These programs provide a novel way of working with Lie maps 
by manipulating them in Taylor series form. Presently, the perturbative methods used 
in these programs proceed relative to some fixed point of the map, most often the 
origin in phase space. Unfortunately, this method at best converges up to the separatrix 
of the nearest resonant island chain it sees. However, the KAM theorem assues us that 
for sufficiently small nonlinearity invariant tori will exist throughout the phase space. 

My purpose has been to find an approach that instead of relying on a fixed point, 
converges at best at some specified radial distance from the origin. Strictly speaking 
none of these asymptotic series converge. Instead for near-integrable systems the 
approximation keeps getting better up to a certain order in the expansion after which 
additional terms make the series diverge. For simplicity the examples given below are 
in one degree of freedom although they are very easily generalised to many dimensions. 

2. Notation and preliminaries 

: f :  = Poisson bracket operator 

where f and g are functions of the phase space variables x and p .  

exp(:f :)g = g+[f,  g l+[ f ,  [f, g11/2!+. * * * 
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We define J and (b so that 
x = ~ 2 3  sin 4 
p = m cos (b. 

M = exp(:-pJ:) exp(:af:) ( 1 )  

We begin with a map of the form: 

where p is the constant tune, (Y is a smallness parameter, and f is a polynomial in x 
and p of higher than second order. More explicitly, for the case f = x4/4, M maps the 
initial point (x, p )  into the final point ( X ,  P )  as shown: 

X = x  cos p +  p sin p 

P =  -x sin p + p  cos p + x 3  ( 2 )  

We will be going back to this particular map as a specific example later on. For 
now notice that the map exp(:-pJ:) simply acts like a rotation in phase space by an 
angle p. For brevity we will denote this map by R. It can be shown that all maps of 
the form ( 1 )  are symplectic [8] whereas the map (2) might describe a harmonic oscillator 
experiencing an octupole kick. Our goal is to find a similarity transformation linking 
M with another map N that depends only on the radial variable J. 

M = A-' NA 
where N is of the form: R exp(:k(J):). Once this is done the invariant curves of the 
map M are just given by the function: 

(3 1 

J* = A-'J = constant 
since 

MJ* = A-'NAA-'J 

= A - ~ N J  
=A--' J 

and because the Poisson bracket of J with itself is zero. 
Before we can proceed any further we need a few more tools. 

Theorem 1. Let f and g be arbitrary functions of the phase space variables, then 
e:f:,:g:e:-f: - - exp(:ezf'g:). 

Theorem 2. The Cambell-Baker-Hausdorff formula [9]. Let A, B and C be non- 
commuting operators, and a a smallness parameter, together satisfying 

exp( (YA) exp(aB) = exp( aC) 
then 

C = A + B + a { A ,  B} /2  + a2{A,  {A ,  B}} /  12 + a2{B,  {B,  A}} /  12 + . . 
where {A ,  B }  = AB - BA is the commutator of A and B. 

Theorem 3. Let f and g be arbitrary functions of the phase space variables, then [ 101: 

{:f:, : g : }  = : [ A  g ] : .  

Combining theorems 2 and 3 provides a way of manipulating Lie maps as inf .lite 
series; all one really needs is the ability to compute Poisson brackets. 
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3. Second-order factorisation 

We are now ready to find the maps N and A-'. I shall first present a second-order 
factorisation about the origin and then compare this with a perturbation series that is 
displaced from the origin. 

N = AMA-' 

N = exp(:cuF+ a2G:)R exp(:af:) exp(:-crF- CY'G:) 

N = RR-' exp(:cuF+ a 2 G : ) R  exp(:af:) exp(:-aF- CY'G:). 

Using (3) we begin as follows. 

Applying theorem 1 gives: 

N = R exp(:aR- 'FS a2R-- 'G:) exp(:af:) exp(:-ai;- a 'G:),  

Now use the CBH formula to combine the exponents to second order in CY: 
N =  R e x p ( : c u ( f - ( l - R - ' ) F ) + c u 2 ( [ R - ' F , f ] / 2  

+[F,f]/2+ [F ,  R-'F]/2 - ( 1  - R-')G):). (4) 
It is up to us to choose the functions F and G so that N is a function of J alone. 

First break f into components f i  and f i ,  so that: 

f ( J ,  4) =fXJ)+.MJ, 4). 
Choose 

F = ( 1  - R-')-'fil 

G = ( 1  - R- ' ) - ' (  [ f ]  + [ F, f ]  + [ F, R-'F])11/2. 
The reason for projecting out the perpendicular components of the functions above 

is that the operator ( 1  - I"')-' is undefined when acting on terms that depend only 
on J.  This naturally suits our purpose since we do not wish to cancel these terms. 

Example. 

f = x 4 / 4 3  f i  = $J2 fii = J'(COS 4 4  -4 COS 24)/8 
F = ( 1  -e:cL':)-'J2(cos 4 4  -4  cos 24)/8 

sin 4 4  sin 4 p  
1 -Cos 4p 

4 sin 2 4  sin 2 p  
1 -cos 2p 

-4Cos24-  

Thus to first order: 

N = R exp(:a3J2/8:). 

The factor sin m p / ( l  -cos m p )  is ever present in this perturbation series and can 
become quite large when m p  is, near an integral multiple of 2 ~ .  The basic idea behind 
what I am about to do differently is that we need not form our perturbation series 
about the unperturbed tune p. Rather shifting the tune to some value p' displaces us 
away from the origin and possible resonant island chains. To see how this works we 
return to the map (1) and insert the identity map twice: 

M = exp( : - J o 4  : ) exp( : Jo4 : ) exp( : - pJ : ) exp( : olf ( J ,  6, ) : ) exp( : - Jo4 : ) exp( : J o 4  : ) 
M =exp(:-J&:) exp(:-pJ:) exp(:af(J+ Jo,  4 ) : )  exp(:+Jo4:). ( 5 )  
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Whereas R was a rotation in phase space, the map exp(:Jo4:) provides a displace- 
ment in the variable J by an amount Jo.  Previously, we stipulated that the function f 
be a polynomial in x and p of higher than second degree. The inclusion of Jo in f has 
undoubtedly generated a linear dependence off on J. We wish to factor out this linear 
part. 

exp(:cyf’(J+Jo, 4, a ) : )  = exp(:cyaJ:) exp(:cyf(J+Jo, 4):). ( 6 )  
We choose ‘a’  so that the linear part o f f ’  vanishes. This gives: 

M = exp(:-Jo4:) exp(:-(p + cya)J:)  exp(:cyf’(J+Jo, J o ,  4):) exp(:+Jo+:) 

M = R’exp(:af‘(J, J,,, 4):). 
At this point we can use Forest’s program to factorise this map in the usual way. 

The parameter Jo can be seen either as a spatial displacement in phase space or as a 
way of avoiding the small denominators associated with a highly resonant p, 

(7) 

4. A specific example 

Let us now work out as a specific example the map ( 2 ) .  We shall go to second order 
in the smallness parameter cy. 

M =exp(:-pJ:)  exp(:ax4/4:) 
M = R exp(:cyJ2 sin4 4:). 

After introducing the identity we get 
M = exp(:-Jo4:) exp(:-pJ:) exp(:cy(J+J,)’ sin4 4 : )  exp(:+Jo4:) 

f ’ = a J + ( J + J o ) 2 ( C o s 4 ~ - 4 c o s 2 ~ ) + ~ ( J + J o ) 2  
xexp(:cy(J+Jo)2 sin4 4 : )  = exp(:-aaJ:) exp(:cyj’:) 

+cya(~+~, ) ’ ( s in44  - 2  sin 24)+0(cy2). 
Equating the linear part o f f ’  to zero in (8) gives a = -$Jo. 

As in equation (7)  we are left with the map 
M’=exp(:-p’J:) exp(:ag+a2h:)  

3 where p’  = p - a,J0 
g = J 2  sin4 4 - $Uo (9) 

and h = &J0J2(2 sin 2 4  -sin 44 ) .  

Forest’s program would give for the map S below: 
We can compare what factorisation of the second-order map M‘ gives with what 

s = exp(:-p’J:) exp(:cyJ2 sin4 4 : ) .  
They are nearly the same except that we are required to include an additional term 

in equation (4) namely 
a2( 1 - R-l)-I(h + [ K I F +  F, -$r0J] /2)  

cos 44 sin 4p’  
1 -cos 4p’  

-sin 44 - 

= cy2$JoJ2(2(1 + a Z )  sin 2 4  - (1 + b2)  sin 44) 
where a = sin 2p’/( 1 -cos 2p’) and b = sin 4p’/(1 -cos 411‘). 
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5. Results 

If we look at the effect of applying the transformation A-' to particles tracked through 
A4 we see that the invariant tori in the original space are transformed into circles in 
the new space. (See the appendix for the explicit derivation.) This provides a visual 
way of testing the perturbation series using a computer. Figure l ( a )  shows the x - p  
phase portrait of the map (2) for p =0.255 (27r) and at various initial conditions. 
Because of the dependence off  on x4 this map is highly sensitive to the resonance at 
p / 2 ~  =a .  These points are then mapped through the second-order transformation A-' 
calculated above and the result is shown in figure l ( b ) .  The radial parameter .To = 0.4 
was chosen in order to displace us outside the large, period four-island chain. The 
same procedure is followed in figure 2 except that for this map p = 0.245(27;). The 
reasoning behind displacing the tune is simply that if we are interested in the behaviour 
of the mapping away from the origin then that is where we must base our series. 

1 .o 

0.5 

0 

-0.5 

- 1  -0 5 0 0 5  1 -1 -0 5 0 0 5  1 
-1 0 

Figure 1. Trajectories of the mapping (2) ( a )  with + = O  255  (2n), ( b )  transformed using 
the operator A-' with J ,  = 0 4 

In figures 3 and 4 we can see what happens when we set the parameter Jo = 0 in 
the perturbation series. In figure 3 ( b )  tori are transformed into circles all the way out 
to the separatrix of the resonant island chain. However, further out and beyond, this 
series is seen to diverge wildly. Although there is no large island chain near the origin 
in figure 4, the resonant denominator sin 4 p / ( 1  -cos 4p)  still causes the series to 
diverge further out. 

6. Generalise with the DA package 

It turned out to be rather straightforward for Forest to integrate this new approach 
into his Lie algebra programs. Because these programs rely on the differential algebra 
(DA)  package of Berz one can go to arbitrary order in this type of perturbation series 
without ever having to use the CBH formula; exponential maps are concatenated in 
Taylor series form. The method works in two, four and six dimensions but there is a 
drawback to its current implementation which I show how to correct below. 
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-0.5 

t 
- 1 . O L '  ' I '  " " I '  " " ' 

- 1  -0.5 0 0.5 1 

Figure 2. Trajectories of the mapping (2) :  ( a )  with p = 0.245 (277); ( b )  transformed using 
the operator A-' with Jo = 0.4. 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.4 -0.2 0 0.2 0.4 

0.4 

0.2 

0.0 

-0.2 

-0.4 

Figure 3. Trajectories of the mapping (2): ( a )  with + = 0.255 (2.n); (b)  transformed using 
the operator A-' with Jo = 0. 

Basically what Forest? did was allow the user to select the tune p' about which 
the series would be formed. This way the series would converge best for the curve 
having tune p' regardless of resonances near the origin in phase space. Unfortunately 
selecting a specific radial distance requires advance knowledge of how the tune varies 
with amplitude at high order in the perturbation series. 

In any case, the ability to go to very high order in the expansion shows undeniably 
that shifting the tune produces a series that converges away from the origin. Figure 
5(a) is a tenth-order (KxlO) extension of figure l (b ) .  Here the shifted tune p' was 
chosen to make the m = 4 resonant denominators small thereby displacing us outside 

t Forest felt that the modifications to his existing programs were so slight that they did not require publication. 
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-0.4 -0.2 0 0.2 0.4 

Figure 4. Trajectories of the mapping (2):  ( Q )  with p. = 0.245 (211); ( b )  transformed using 
the operator A-' with Jo = O .  

0.0 1 
t 

c 
- 1 . 0 '  ' ' I '  I '  " " " I '  I '  

-1 -0.5 0 0.5 1 

Figure 5. ( a )  The trajectories of figure l ( ~ )  transformed by the tenth-order map A-' with 
p'= 0.207 (2n). ( b )  The trajectories of figure 2 ( Q )  transformed by the tenth-order map A-' 
with p.'=0.207 (211). 

of the island chain. Figure 5 ( b )  is the same as figure 2 ( b )  except that here the series 
was also carried to tenth order. 

The second-order calculation tells us approximately what tune to pick to be at a 
certain radial value of Jo.  However, as the order of the series is increased, cross terms 
at high order move us away from the selected value of Jo .  To make a truly 'fixed J,,' 
perturbation series rather than a 'fixed tune' series requires an iterative procedure. 
Instead of selecting F '  only at the beginning of the calculation, at every order we chose 
a different tune so as to drag ourselves back onto the curve at .lo. The idea of selecting 
multiple tunes about which to form our perturbation series is a natural extension of 
choosing a tune different from that at the origin. 
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7. A multiple frequency expansion 

To illustrate this idea I present a second-order calculation similar to that above except 
with a different tune at every order in the expansion. The method is quite easily 
extended to higher order and more dimensions. 

Again begin with 

M = exp(:-pJ:) exp(:af:) S=f,(J)+fi1(J, 4)  
N = AMA-’ 

= exp(:a2G:) exp(:aF:) exp(:-pJ:) e x p ( : - a d : )  exp(:aaJ:) exp(:af:) 

x exp(:-aF:) exp(:-a2G:). 

Choose a = -(df,/aJ), 

N =exp(:a2G:)  exp(:aF:)  exp(:-(p + a a ) J : )  exp(:aaJ+ af+iaa2[J , f i l ] : )  

x exp(:-aF:) exp(:-a*G:). 

In the earlier calculation J was actively translated by the amount Jo and ‘U ’  was 
chosen in order to cancel the linear part in f: The step above is equivalent to this but 
gives a lesser feeling of translating in space. 

Define p’ = p + aa 

F = (1 - exp(p’J))-’fiI. 

At first order 

N = exp(:-(p + a a ) J : )  exp(:cuaJ + af,:) 

tune = p - a ( 8 f J d J ) .  

At Jo tune = p + au. 
Continuing on to second order: 

N = exp(: a2 G: )R’ expi : aaJ + afi + ( m 2/2)[ J,  fill + ( acu2/2)[ F, J ]  

+ (a2 /2 ) [R’ - ’F , f -  F j  3- ( a 2 / 2 i [ F , f ] : >  exp(:-a2G:). 

Define g so that 

N = exp(:a2G:) exp(:-p’J.) exp(:-a2bJ:) exp(:a*bJ:) exp(:aaJ+ af,+ a’g:) 

x exp(:-a2G:). 

Choose b = -(ag,/aJ)jo I 

Define p ” =  ,U’+ a 2 b  

G = (1 - exp(p”J))-’glI .  

At second order 

N =exp(:-(p + aa + a 2 b ) ~ : )  exp(:craJ+ af_+ a 2 b ~ +  a’g,:) 

= exp(: - p ~  + ofL + a2g, :) 

tune = p - a(af,/aJ) - a’(ag,/a~).  
At Jo tune = p + aa + a2b. 
This process repeats to all orders and only depends on our initial choice of J,,. 

Notice that at every order in the calculation we are working with the tune at Jo.  
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8. Conclusion 

It has been shown that by using the standard techniques of Lie perturbation theory 
one can construct the canonical transformations which solve a certain class of analytic 
symplectic maps in a previously inaccessible region of phase space. The most direct 
application of these techniques is in the field of accelerator physics where for large 
complicated machines the mapping approach is supremely advantageous over Hamil- 
tonian methods. A potential machine is the proposed SSC for which the question of 
long term stability is very important. Also relevant to the subject of computer oriented 
perturbation methods is the work of Warnock and Ruth [12] who succeeded in 
approximating invariant curves outside of island chains by direct substitution of the 
Fourier series into the Hamilton-Jacobi equation. 
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Appendix 

Let z be our coordinate vector and let Ji and 4i be our starting point in phase space: 

zi = (Ji, 4i)* 
Let 5 = M(zi)z i  then 

zf = A-' (5) M (  zi)zi 

= A-'( M(z i ) z i )M(  zi)zi 

= M ( zi )A-' ( zi ) M-' ( zi ) M ( zi ) zi 

= A-'(zi)N(zi)zi 

= (A-'Ji, A-'Nq$). 

If N is of the form R exp(:k(J):)  then: 

zf = A-'(Ji, 4j + p  - ( d k / d J i ) )  

and after n iterations: 

Z" = A-'(Ji, 4i + n p  - n(ak /aJ i ) ) .  

So the transformed J is a constant in time while + increases at a constant rate. 
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